
UMD-LETKF Documentation

Travis C Sluka

Feb 05, 2020

Contents:

1 Overview 3

2 Installation 5
2.1 Dependencies . 5
2.2 Compiling . 5
2.3 Running Tests . 6
2.4 CMake options . 6

3 Configuration 9
3.1 localization . 9
3.2 mpi . 13
3.3 observation . 13
3.4 solver . 19
3.5 state . 20
3.6 Example Configuration . 25

4 Diagnostic Output 27
4.1 LETKF Solver Diagnostics . 27
4.2 loc_ocean Diagnostics . 27

5 Reference 29
5.1 LETKF Algorithm . 29
5.2 Inflation Schemes . 30
5.3 Custom Plugins . 30
5.4 Citations . 30

6 Support 31

Bibliography 33

i

ii

UMD-LETKF Documentation

Universal Multi-Domain Local Ensemble Transform Kalman Filter

Contents: 1

UMD-LETKF Documentation

2 Contents:

CHAPTER 1

Overview

The Universal Multi-Domain Local Ensemble Transform Kalman Filter (UMD-LETKF) is a rewrite of the LETKF
originally developed by [Hunt2007], coded by [Miyoshi2005], with additional modifications for the ocean by Steve
Penny.

It is built with the following design choices in mind:

• model agnostic library - A single generic LETKF library is provided that can be compiled once and then used
in all domains of a coupled LETKF system. Redundancies in code are eliminated this way. Most specialization
for a given domain are done through configuration files, and a generic driver is provided that should handle most
use cases. A custom driver can easily be built to interface with the library if model specific code needs to be
added.

• object oriented design - Several default implementations of classes for observation I/O, model state I/O, and
localization are provided. If different functionality is required, the user can create their own derived classes and
register them with the LETKF library.

• multi-model strong coupling - By being model agnostic, the code should allow for easy transition from weakly
coupled to strongly coupled DA. The same LETKF code can be used for multiple independent executables (one
for each domain), and cross-domain observations can be assimilated by selecting the appropriate observation
I/O and localization classes.

3

UMD-LETKF Documentation

4 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Dependencies

The following dependencies are required in order to compile UMD-LETKF. (These should all be available in package
managers for standard Linux installations)

• CMake

• Fortran Compiler (gfortran >= 5.0, Intel >= 16.0, tested)

• NetCDF4 w/ API for Fortran

• MPI (openmpi and intelmpi tested)

• BLAS

• LAPACK

The following dependencies are optional, depending on the features the user wants enabled for UMD-LETKF at
compile time, and can be installed separately, or built as part of UMD-LETKF with the appropriate CMake options

• WGRIB2 API from NCEP (optional)

2.2 Compiling

First, download the source code, which includes external repositories (libyaml and geoKdTree)

git clone https://github.com/travissluka/UMD-LETKF.git
cd UMD-LETKF
git submodule update --init

Then, create a directory in which UMD-LETKF will be built

mkdir build
cd build

5

https://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
https://github.com/yaml/libyaml
https://github.com/travissluka/geoKdTree

UMD-LETKF Documentation

Configure with cmake, pointing it to the location of the source directory (the parent directory in this example), and
build

cmake ../
make

CMake might complain about certain libraries not being found, such as NetCDF4. If this happens, you might need to
specify the path to these libraries with the -DCMAKE_PREFIX_PATH= option. (see CMake options)

2.3 Running Tests

To run the test cases, specify the -DLETKF_ENABLE_TESTS=ON when running cmake

cmake ../ -DLETKF_ENABLE_TESTS=ON
make
ctest

This will download test data and the correct reference solutions, and test to make sure the answers are within margin of
error of being identical to the reference solutions. Note that the test data and reference solutions are updated every now
and then on Dropbox, so old versions of the GitHub are not guaranteed to pass the tests. It is therefore recommended
that you are using the latest version of UMD-LETKF before running the test cases.

The above commands will simply tell you whether or not the test cases pass or fail. To see the actual output of the
UMD-LETKF, run with the -VV flag. You can also run specific subsets of tests. Run with the -N flag to see a list of
the available tests, and run with -R <testname> to run a specific set of tests.

Warning: The reference answers for these tests were generated with GCC7 and so may not match Intel compilers
that have I have not extensively tested (version 17.0+). Hopefully this will be updated in the near future. So, don’t
be alarmed if your ctests fail if you’re using Intel compiler.

2.4 CMake options

There are several command line options that can be passed to CMake when configuring the build. The following
options are a small subset of the options most relevant to UMD-LETKF

• -DCMAKE_BUILD_TYPE=Debug

compile in debug mode, the code runs slower, but more likely to produce a useful error message if there is a
unexpected run-time error. Without this flag UMD-LETKF will by default compile in Release mode

• -DCMAKE_PREFIX_PATH=. . .

used to specify one or more directories in which to search for the required libraries (NetCDF, MPI, WGRIB2,
etc. . .) If more than one directory is specified, they should be separated by a semicolon and surrounded by
quotation marks. E.g.

6 Chapter 2. Installation

https://www.unidata.ucar.edu/downloads/netcdf/index.jsp

UMD-LETKF Documentation

cmake ../ -DCMAKE_PREFIX_PATH="$NETCDF_DIR;$WGRIB2_API_DIR"

• -DLETKF_ENABLE_GRIB=ON

Builds the optional grib state I/O module. If enabled, either the path to the wgrib2 api needs to be specified in
CMAKE_PREFIX_PATH, or LETKF_BUILD_GRIB needs to be enabled.

• -DLETKF_BUILD_GRIB=ON

If LETKF_ENABLE_GRIB is on, the wgrib2 api will be downloaded from the NCEP server and built before the
rest of the UMD-LETKF library is built

• -DLETKF_ENABLE_TESTS=ON

The test cases and reference solutions are downloaded. After compiling the tests can be run by using ctest

2.4. CMake options 7

UMD-LETKF Documentation

8 Chapter 2. Installation

CHAPTER 3

Configuration

All configuration of UMD-LETKF is done through a single YAML configuration file. The UMD-LETKF, when run,
will by default look for a configuration file in the same directory named letkf.yaml. Or, a different file can be specified
on the command line

./letkfdriver <somefile.yaml>

An introduction to the YAML format can be found here.

Warning: In some places the UMD-LETKF does not perform extensive error checking on the configuration
file, meaning an improperly defined configuration file might result in cryptic messages and crash. If you come
across this, please let me know as I am slowly trying to make sure all yaml misconfigurations produce helpful error
messages.

Each of the major sections of the configuration file are described below. Each main section is required, though within
a section specific parameters may be optional.

3.1 localization

The localization class determines how spatial and temporal localization is performed, a crucial aspect of how an
LETKF operates. This include localization for horizontal, vertical, temporal, and state variable components.

Warning: The localization configuration is perhaps the least finished part of UMD-LETKF. Things here will
likely change quite a bit as localization methods are added for other domains, and/or a way to generically and
flexibly specify localization is added.

9

https://yaml.org/spec/1.1/
https://yaml.org/spec/1.1/

UMD-LETKF Documentation

Parameters

The following parameters are available regardless of which localization class is selected. Additional parameters,
described in subsequent sections here, will be required depending on which localization class is selected.

class type: string, required

The name of the localization class to use.

Currently, UMD-LETKF has two built-in classes that can be used, additional localization classes
can be implemented by the user. The following options are available:

• loc_novrt - A generic class that has no localization in the vertical, only in the horizontal.

• loc_ocean - Localization specific to the ocean.

Note: All localization radii defined below are given as a standard deviation of a Gaussian. (Even though they are
implemented as a compact Gaspari-Cohn function)

3.1.1 loc_novrt

The loc_novrt localization class implements a basic horizontal-only localization. The bare minimum needed to
have a working LETKF. No vertical localization is performed.

Parameters

hzloc type: hzloc, required

Horizontal localization specification used for all observation types.

Example

localization:
class: loc_novrt
hzloc:
type: linearinterp_lat
value:
- {lat: 0.0, radius: 500.0e3}
- {lat: 90.0, radius: 50.0e3}

3.1.2 loc_ocean

The loc_ocean localization class implements a localization strategy specific to the ocean. Namely, satellite and
insitu observations can be given a different horizontal localization radius (given the abundance of satellite observations
compared to insitu, satellite observations should be given a smaller horizontal localization radius). Also, vertical
localization of the satellite observations to just the ocean mixed layer, can be enabled

Parameters

save_diag type: logical, default: true

10 Chapter 3. Configuration

UMD-LETKF Documentation

If true, diagnostic information specific to the ocean localization will be saved. See loc_ocean Diag-
nostics for more information on the fields that are saved.

diag_file type: string, default: diag.loc_ocean.nc

The file to which ocean localization diagnostics are saved, if save_diag is set to true. See
loc_ocean Diagnostics for more information

hzloc_prof type: hzloc, required

The horizontal localization specification for insitu profiles.

Insitu profiles are determined to be the observations and platform types that are NOT included in the
following sat_obs or sat_plats parameters.

hzloc_sat type: hzloc, required

The horizontal localization specification for satellite observations.

Satellite observations are determined to be the observations and platform types that are included
in the following sat_obs or sat_plats parameters. For each observation, if its type matches
one listed in sat_obs, or its platform type matches one listed in sat_plats, it is considered a
satellite observation (it does not have to match both).

tloc_prof type: float, default: -1.0

Temporal localization for insitu profiles (in hours). If < 0, temporal localization is disabled.

tloc_sat type: float, default: -1.0

Temporal localization for satellite observations (in hours). If < 0, temporal localization is disabled.

vtloc_surf type: vtloc, default: type=none

The vertical localization specification for satellite observations.

Insitu profiles do not have any vertical localization.

sat_obs type: array of strings, optional

An array of observation names that are to be treated as satellite observation for localization purposes.
See Observation and Platform Names.

sat_plats type: array of strings, optional

An array of platform names that are to be treated as satellite observations for localization purposed.
See Observation and Platform Names

vtloc Parameters

Specification of the vertical localization.

type type: string, default: none

The type of vertical localization to use for the ocean. Currently two options are available:

• none - vertical localization is off, observations impact the entire vertical column.

• bkg_t - surface observations are localized to the surface mixed layer, as calculated from a
change in background temperature criteria.

bkg_t_delta type: float, required

The change in background temperature (Celsius) from the surface to some depth, used for calculating
the depth of the ocean mixed layer.

3.1. localization 11

UMD-LETKF Documentation

bkg_t_var type: string

The name of the background temperature variable used for calculating the mixed layer depth. This
state variable name must be one of those given in state.statedef .

Example

localization:
class: loc_ocean
save_diag: true
hzloc_prof:
type: linearinterp_lat
value:
- {lat: 0.0, radius: 720.0e3}
- {lat: 90.0, radius: 200.0e3}

hzloc_sat:
type: linearinterp_lat
value:
- {lat: 0.0, radius: 500.0e3}
- {lat: 90.0, radius: 50.0e3}

sat_plats:
- ocn_sat

vtloc_surf:
type: bkg_t
bkg_t_delta: 0.2
bkg_t_var: ocn_t

3.1.3 Common Types

hzloc Parameters

This parameter type is used to specify the characteristics of the horizontal localization.

type type: string, required

The type of horizontal localization to use. Currently, the only valid option is
linearinterp_lat. This type gives a horizontal localization radius that changes with
latitude. Several latitudes are specified, along with the desired radius, and linear interpolation is
used to calculate the radius for any valid latitude.

value type: array of lat/radius values

An array of lat / radius pairs. See the example below for clarification.

• lat: absolute value of latitude in degrees

• radius: horizontal localization radius, meters. Given as the standard deviation of a Gaussian.

Note that all latitude values are positive. Currently, different values cannot be given for southern/northern hemisphere.
If 0.0 and 90.0 are not included in the list of latitudes, they are implicitly added using the radius of the nearest given
latitude.

Example

Note that in this example a latitudes between 0.0 degrees and 5.0 degrees have a localization radius of 500 km, all
latitudes above 50.0 degrees have a radius of 100 km. In between they are appropriately linearly interpolated.

12 Chapter 3. Configuration

UMD-LETKF Documentation

hzloc:
type: linearinterp_lat
value:
- {lat: 5.0, radius: 500.0e3}
- {lat: 10.0, radius: 300.0e3}
- {lat: 50.0, radius: 100.0e3}

3.2 mpi

These parameters directly affect how UMD-LETKF scatters the model state across the processors and how it optimizes
file I/O.

Warning: In an attempt to improve memory usage with the MPI calls, I over-optimized, resulting in overly slow
performance in the MPI scatter/gather calls if a large domain or high number of ensemble members are used. This
will be fixed in the future.

Parameters

ens_size type: integer, required

The number of ensemble members.

ppn type: integer, default: 1

The number of processors per node.

Optional, but may help improve I/O performance by evenly distributing across nodes the the PEs
which perform simultaneous I/O.

Example

mpi:
ens_size: 20
ppn: 10

3.3 observation

Parameters for specifying how the observations are read in, or how synthetic test observations are generated, are
controlled under this section. The exact contents of this configuration section depends on which I/O class is used.

Parameters

The following parameters are available regardless of which observation reader class is selected. Additional parameters,
described in subsequent sections here, will be required depending on which localization class is selected.

class type: string, required

The name of the observation I/O class to use.

3.2. mpi 13

UMD-LETKF Documentation

Currently, the UMD-LETKF has three built-in classes. Additional classes may be implemented
by the user. The following options are available, and their specific configuration requirements are
described in the following sections.

• obsio_ioda - Provides the ability to read observation files in the JEDI IODA format from the
JEDI hofx application.

• obsio_nc - A generic NetCDF4 file reader.

• obsio_test - Generates synthetic observations from a specified increment value.

Note: If you’re hooking up your model to the UMD-LETKF for the first time, you’re best bet is to use the obsio_test
reader first (to make sure everything else is hooked up correctly), before trying the obsio_nc or obsio_ioda readers
with real observations.

Filename Ensemble Placeholder

Some of the classes below require filenames for the per-ensemble member observation input. In these cases the
#ENSX# placeholder can be used within the string of the filename. It is replaced with the ensemble member number
(starting at 1), padded with zeros to ensure the number is X digits long. For example sst_obs.#ENS4#.nc will be
substituted as sst_obs.0001.nc, sst_obs.0002.nc, . . .

Observation and Platform Names

The observation I/O classes require that names are given for different observations and platforms. These can be set
to whatever the user wants, and their use can be considered optional. The exact name is not important, but may
be referenced by other sections of the configuration (such as localization). As a general reference, the observation
type should reflect which variable is observed (e.g. ocn_sst, ocn_t) and the platform type can reflect either specific
platforms (e.g viirs, avhrr) or a general satellite vs. insitu. Hopefully this will make more sense when seen how it is
used in the localization section.

Note: The observation and platform names should be short, with a 10 character max.

The following documentation describes the observation reader classes that are available for use.

3.3.1 obsio_ioda

This observation I/O class can be used to read observation operator output files from the Joint Effort for Data Assim-
ilation Integration (JEDI) based applications. Files are in the IODA NetCDF format. (More of an explanation about
this will likely be added once the JEDI repositories are made public.) Currently only the hofx or hofx3d applications
are supported, not the enshofx. (Odds are you will be wanting to use the hofx3d application only anyway).

Warning: Efficient distribution of the read operations across PEs has not been implemented for this class. Large
operational size datasets might be a little slow until this is fixed.

Parameters

ioda_files type: ioda_file list, required

14 Chapter 3. Configuration

UMD-LETKF Documentation

This section contains a list of files that should be loaded, each with the following parameters:

ioda_file Parameters

Each set of ioda files to be read requires the following parameters:

file type: string, required

The base name of the file to read.

The notation of the Filename Ensemble Placeholder should be used since there should be separate
files for each individual ensemble member. Also, JEDI applications currently produce output files
for each PE of the application, so the filename given will automatically try appending the appropriate
_0001.nc, _0002.nc, ... suffixes.

vars type: list of array(s), required

For each desired variable in the input file, an array is given with three values that have the following
meaning:

1. observation name - see Observation and Platform Names

2. platform name - see Observation and Platform Names

3. variable name as given in the IODA observation file

Example

observation:
class: obsio_ioda
ioda_files:
- file: mem#ENS1#/sst.out
vars:
- [ocn_sst, sst_viirs, sea_surface_temperature]

- file: mem#ENS1#/insitu.out
vars:
- [ocn_s, insitu, sea_water_salinity]
- [ocn_t, insitu, sea_water_temperature]

3.3.2 obsio_nc

The NetCDF reader will read in two types of files. The first is the main observation file given by the filename_obs
parameter below and the format of which is described by Observation File Format. This file provides each observation
type, location, and value. The second set of files are the per-ensemble member observation operator files, given by the
filename_obshx parameter below and the format of which is described by Observation H(x) File Format.

Note: Although the configuration here allows for observation data that is common across all ensemble members to be
specified in a separate filename_obs file, they do not have to be. All observation data could be in the per-ensemble
member filename_obshx files. In this case, observation files should contain all the data required by both the
Observation H(x) File Format and Observation File Format specs, and the filename_obs should simply point to
one of the ensemble files.

3.3. observation 15

UMD-LETKF Documentation

Parameters

filename_obs type: string, required

The name of the observation file to read in.

The expected contents of this NetCDF file are specified by Observation File Format.

filename_obshx type: string, required

The name of the per-ensemble observation operator file.

The Filename Ensemble Placeholder should be used to read in each individual ensemble member
file. The expected contents of this file are specified by Observation H(x) File Format.

obsdef type: list of obsplat_def , required

Provides a mapping from the integer values of the observation type in the NetCDF file with a human
readable name. See also Observation and Platform Names.

platdef type: list of obsplat_def , required

Provides a mapping from the integer values of the platform type in the NetCDF file with a human
readable name. See also Observation and Platform Names.

read_inc type: boolean, required

If true, the values given in the per-ensemble member files are given as increments, 𝑦𝑜 − ℎ(𝑥),
otherwise they are taken as the direct output of an observation operator, ℎ(𝑥).

obsplat_def Parameters

These parameters are required for the obsdef and platdef sections of obsio_nc and are used to associate a human
readable name with the integer id that is stored in the NetCDF file

name type: string

Name of the observation or platform. Note the advice of Observation and Platform Names

id type: integer

The integer value in the NetCDF file.

description type: string

Optional description of the observation or platform type. Not needed by UMD-LETKF other than
for the sanity of the user.

Example

observation:
class: obsio_nc
obsdef:
- name: ocn_t
id: 2210
description: "ocean insitu temperature (C)"

- name: ocn_s
id: 2220
description: "ocean salinity (PSU)"

platdef:
- name: ocn_prf

(continues on next page)

16 Chapter 3. Configuration

UMD-LETKF Documentation

(continued from previous page)

id: 1
description: "all insitu obs"

- name: ocn_sat
id: 1000
description: "all satellite based obs"

filename_obs: obs.nc
filename_obshx: "obs.#ENS4#.nc"
read_inc: false

Observation File Format

The NetCDF file containing observation data needs to contain the following dimensions and variables of the same
name. An example file can be found in the test data for UMD-LETKF.

Note: I realize the variable “depth” is required and that that “height” is not a valid option. Since UMD-LETKF was
started for ocean DA, this will be addressed once non-ocean localization classes are implemented.

dimensions

obs Number of observations in the file

variables

All variables here are of size obs

depth type: float

The depth of the observation in meters.

err type: float

The standard deviation of the observation error

hr type: float

The time offset (in hours) from the analysis time. Only actually used if temporal localization is used.

lat type: float

Latitude in degrees

lon type: float

Longitude in degrees

obid type: integer

The observation id. See obsplat_def

plat type: integer

The platform id. See obsplat_def

qc type: integer

Quality control flag. Observation is used by UMD-LETKF only if qc is zero.

3.3. observation 17

UMD-LETKF Documentation

val type: float

The value of the observation.

Observation H(x) File Format

The NetCDF file containing per-ensemble member observation operator data needs to contain the following dimen-
sions and variables of the same name. An example file can be found in the test data for UMD-LETKF.

dimensions

obs Number of observations in the file.

variables

All variables here are of size obs

hx type: float

The value of the observation operator from a single ensemble member background. This can ei-
ther contain the value (ℎ(𝑥)), or the observation increment (𝑦𝑜 − ℎ(𝑥)), depending on the value of
read_inc in obsio_nc

3.3.3 obsio_test

This observation I/O class can be used to generate synthetic observations from the state background mean using a
specified increment. This method can be useful when wanting to perform a quick single-obs test, bypassing the need
to generate observation files. Test observations can only be generated directly from the state background (i.e. the
identity observation operator is used.)

Parameters

synthetic_obs This section contains an array of arrays (see the example below if that doesn’t make sense).
Each observation specification contains an array of nine values, in the following order

1. observation_id - A string reflecting the type of observation (see Observation and Platform
Names).

2. platform_id - A string reflecting the type of platform (see Observation and Platform Names).

3. state_variable - The state variable that this observation is generated from. The value given
must be one of the name of one of the state variables given in the state.statedef section.

4. latitude - in degrees

5. longitude - in degrees

6. depth/height - The value in the vertical coordinate. If this observation is being generated from
a 2D surface state field then the depth/height here is ignored.

7. time - the time offset (in hours) from the analysis time. This value is only used if temporal
localization is enabled.

8. increment - The value of this observation will be generated as the increment plus the back-
ground

9. error - standard deviation of the observation error

18 Chapter 3. Configuration

UMD-LETKF Documentation

Example

This example generates two observations from the background temperature, both with an observation increment of 1
degree and observation error of 0.2 degree.

observations:
class: obsio_test
synthetic_obs:
- [ocn_sst, satellite, ocn_t, 20.0, -140.0, 0.0, 0.0, 1.0, 0.2]
- [ocn_t, insitu, ocn_t, 25.0, -162.0, 10.0, 0.0, 1.0, 0.2]

3.4 solver

Parameters for the core LETKF solver, diagnostic output, and covariance inflation.

Parameters

save_diag type: boolean, default: true

Whether a diagnostic file is saved at the end of the UMD-LETKF run.

This file contains diagnostic information such as the number of observations used per grid cell,
maximum horizontal localization radius, etc. See LETKF Solver Diagnostics

diag_file type: string, default: “diag.solver.nc”

The file name of the diagnostic output.

Only used if save_diag is set to true.

Example

solver:
save_diag: true
diag_file: "diag.solver.nc"

3.4.1 inflation

Covariance inflation methods for increasing the ensemble spread. This section is optional. If not provided the default
of “no inflation” will be used.

Note: The RTPS and RTPP methods cannot be enabled simultaneously.

Parameters

mul type: float, default: 1.0

The amount of Multiplicative inflation to apply.

Valid parameters are greater than or equal to 1.0. Value of 1.0 indicates multiplicative inflation is
off.

3.4. solver 19

UMD-LETKF Documentation

rtpp type: float, default: 0.0

The percentage of Relaxation to Prior Perturbations (RTPP) to apply.

Valid parameters are between 0.0 and 1.0. Value of 0.0 indicates RTPS is off, 1.0 indicates the
analysis ensemble perturbations are relaxed 100% back toward the background perturbation. Unless
you know what you are doing, you are better off using Relaxation to Prior Spread (RTPS). Cannot
be used if RTPS is enabled

rtps type: float, default: 0.0

The percentage of Relaxation to Prior Spread (RTPS) to apply.

Valid parameters are between 0.0 and 1.0. A value of 0.0 indicates RTPS is off, 1.0 indicates analysis
spread is relaxed 100% back toward the background spread. Values between 0.5 and 0.8 are often
good choices. You could in theory use values greater than 1.0 to result in analysis spread that is
larger than background spread, but I have no idea why you would want to do this. Cannot be used if
RTPP is enabled.

Example

solver:
inflation:
rtps: 0.6
rtpp: 0.0
mul: 1.0

3.5 state

This section defines what the model state looks like, both in terms of the state variables (statedef section) and the
horizontal/vertical grid (hzgrid / vtgrid sections). The specifics of what is in each subsections may include additional
parameters, depending on the stateio class being used (but everything is currently identical for the two builtin state I/O
classes provided by default.)

File Specification Format

Wherever the filevar type is used in the sections below, the following format is used to define which file and
variable name the data is pulled from.:

{file: file_name, variable: variable_name}

Parameters

The following parameters are available regardless of which state I/O class is selected. Additional parameters, described
in subsequent sections here, will be required depending on which state I/O class is selected.

class type: string, required

The name of the I/O class used to handle the state.

Currently, UMD-LETKF has two built-in classes that can be used, additional stateio can be imple-
mented by the user. The following options are available:

20 Chapter 3. Configuration

UMD-LETKF Documentation

• stateio_grib - Handles state I/O through grib2 formatted files. Word of caution: this has
not been well tested yet! But it should work, I think. Only available if built with the -
DLETKF_ENABLE_GRIB=ON option.

• stateio_nc - Handles state I/O through NetCDF formatted files.

hzgrid type: hzgrid required

The definitions of the horizontal grid(s).

statedef type: statedef required

The definitions of the state variables.

verbose type: boolean, default: false

Sets if diagnostic information is printed to the console.

If true, diagnostic information indicating which processor is responsible for reading or writing which
file will be displayed.

vtgrid type: vtgrid required

The definitions of the vertical grid(s).

Example

state:
class: stateio_nc
verbose: true

3.5.1 hzgrid

One or more horizontal grid specification(s) are given by defining how to read the latitude, longitude, and optional
mask. Each grid will have the following parameters.

Note: Currently only one horizontal grid can be specified. Although models often produce some variables on a
staggered grid, you can still use the lat/lon of the grid center, and assuming the localization radius is not too small, this
limitation should make very little difference.

Parameters

In the following parameters for the horizontal grid specification, at least one (or both) of the 1d and 2d set of param-
eters needs to be defined for latitude and longitude.

name type: string, required

A unique name for the horizontal grid.

The exact name doesn’t really matter, but it is referenced in the subsequent statedef sections for
assigning a horizontal grid to each state variable.

lat2d type: filevar

Specifies the 2D latitude grid, in degrees.

3.5. state 21

UMD-LETKF Documentation

lat1d type: filevar

Specifies the 1D latitude grid, in degrees.

The latitude for each row of the grid will be identical. If lat2d is specified as well, lat1d will
only be used as the nominal latitude for the output files. It will not be used to determine lat/lon for
each grid-point in the LETKF algorithm.

lon2d type: filevar

Specifies the 2D longitude grid, in degrees.

lon1d type: filevar

Specifies the 1D longitude grid, in degrees.

The longitude for each column of the grid will be identical. If lon2d is specified as well, lon1d
will only be used as the nominal longitude for the output files. It will not be used to determine lat/lon
for each grid-point in the LETKF algorithm.

mask type: filevar, (optional)

Specifies the optional mask.

The mask is optional, but can increase the UMD-LETKF speed in domains such as the ocean where
land points should skipped over. For the input data, grid-points with values of 0.0 are masked out
and not used.

Example

In the following example, a single horizontal grid named hz1 is specified, the latitude, longitude, and mask of the grid
are obtained from the appropriate variables of the grid/ocean.hgrid.nc file.

state:
hzgrid:
- name: hz1
lat2d: {file: grid/ocean.hgrid.nc, variable: geolat}
lon2d: {file: grid/ocean.hgrid.nc, variable: geolon}
lat1d: {file: grid/ocean.hgrid.nc, variable: lath}
lon1d: {file: grid/ocean.hgrid.nc, variable: lonh}
mask: {file: grid/ocean.hgrid.nc, variable: wet}

3.5.2 vtgrid

Definitions for depth/height information of the vertical grid(s) are specified here. One or more sets of vertical grids
can be defined.

Parameters

name type: string, required

A unique name for the vertical grid.

The exact name doesn’t really matter, but it is referenced in the subsequent statedef sections for
assigning a vertical grid to each state variable.

vert0d not yet implemented

22 Chapter 3. Configuration

UMD-LETKF Documentation

vert1d type: filevar

Vertical coordinates for a column that don’t vary in the horizontal direction.

vart2d not yet implemented

vert3d not yet implemented

Note: vert1d can also use a constant value specification for now, see the following example. This is needed for
surface fields, and is a temporary work around until the vert0d parameter is implemented.

Example

In the following example one vertical grid named vt1 is specified for the 3D variables, and another vt_surf is
specified with a constant value (surface) for the surface only variables

state:
vtgrid:
- name: vt1
vert1d: {file: Vertical_coordinate.nc, variable: Layer}

- name: vt_surf
vert1d: {constant: 0.0}

3.5.3 statedef

This section defines one or more state variables. It defines what the state variables are that should be read and written
by UMD-LETKF, which grid specification they use, and if there are any optional bounds checking on the final state
value or the analysis increment that is applied to the background.

Filename String Placeholders

The input and output parameters below can use special placeholders in the filename string that get replaced at
run-time.

• #ENSX# This placeholder is replaced with the ensemble number (starting at 1), padded with zeros to ensure the
number is of length X. This can also be replaced with mean or sprd for the ensemble mean and spread output
files.

• #TYPE# This placeholder is replaced with either ana or bkg if the output file is for the analysis or background.

As an example, the specification string ocn.#TYPE#.#ENS4#.nc will be used to generate the following files
ocn.bkg.mean.nc, ocn.bkg.sprd.nc, ocn.ana.mean.nc, ocn.ana.sprd.nc, ocn.ana.0001.
nc, ocn.ana.0002.nc, ocn.ana.0003.nc, ...

Parameters

name type: string, required

A unique name for the state variable.

The exact name doesn’t really matter, but it may be referenced in other sections of the configuration
(such as localization)

3.5. state 23

UMD-LETKF Documentation

hzgrid type: string, required

The name of the horizontal grid to use from the hzgrid section of the configuration file.

The x/y dimensions of the input data given below must match the dimensions given for the specified
horizontal grid.

vtgrid type: string, required

The name of the vertical grid to use from the vtgrid section of the configuration file.

The z dimension of the input data given below must match the dimensions given for the specified
vertical grid.

input type: filevar, required

The file and variable name of per-ensemble background data.

Each ensemble member is assumed to be in a separate file, and so the input filename should use the
#ENSX# placeholder. (See Filename String Placeholders)

output type: filevar, required

The file and variable name of the per-ensemble, and mean/spread data.

Each ensemble member is assumed to be in a separate file, and so the output filename should used the
#ENSX# and #TYPE# placeholders (see Filename String Placeholders). In addition to the analysis
per-ensemble output, this handles the mean and spread output files for the analysis and background.

ana_bounds type: float[2], (optional)

The bounds to which the final analysis should be clamped.

ana_inc_max type: float, (optional)

The maximum absolute value allowed for the analysis increment.

Any increment with an absolute value greater than this will be clamped (respecting the original sign
of the increment).

Example

state:
statedef:
- name: ocn_s
hzgrid: hz1
vtgrid: vt1
ana_bounds: [0, 50.0]
ana_inc_max: 2
input: {variable: salt, file: "ocn.bkg.#ENS4#.nc"}
output: {variable: salt, file: "ocn.#TYPE#.#ENS4#.nc"}

- name: ocn_ssh
hzgrid: hz1
vtgrid: vt_surf
input: {variable: ssh, file: "ocn.bkg.#ENS4#.nc"}
output: {variable: ssh, file: "ocn.#TYPE#.#ENS4#.nc"}

24 Chapter 3. Configuration

UMD-LETKF Documentation

3.6 Example Configuration

The following is a complete example yaml configuration file. This exact file is used by the ocean.vtloc ctest to
test the vertical localization method of the ocean data assimilation.

mpi:

ens_size: 10
ppn: 1

solver:
inflation:
rtps: 0.0
rtpp: 0.0
mul: 1.0

state:
class: stateio_nc
verbose: false
compression: 0

hzgrid:
- name: hz1
lat2d: {file: grid/ocean.hgrid.nc, variable: geolat}
lon2d: {file: grid/ocean.hgrid.nc, variable: geolon}
lat1d: {file: grid/ocean.hgrid.nc, variable: lath}
lon1d: {file: grid/ocean.hgrid.nc, variable: lonh}
mask: {file: grid/ocean.hgrid.nc, variable: wet}

vtgrid:
- name: vt1
vert1d: {file: grid/ocean.vgrid.nc, variable: Layer}

statedef:
- name: ocn_t
hzgrid: hz1
vtgrid: vt1
input: {file: "bkg/bkg.#ENS4#.nc", variable: Temp}
output: {file: "#TYPE#.#ENS4#.nc", variable: Temp}

- name: ocn_s
hzgrid: hz1
vtgrid: vt1
input: {file: "bkg/bkg.#ENS4#.nc", variable: Salt}
output: {file: "#TYPE#.#ENS4#.nc", variable: Salt}

- name: ocn_u
hzgrid: hz1
vtgrid: vt1
input: {file: "bkg/bkg.#ENS4#.nc", variable: u}
output: {file: "#TYPE#.#ENS4#.nc", variable: u}

- name: ocn_v
hzgrid: hz1
vtgrid: vt1

(continues on next page)

3.6. Example Configuration 25

UMD-LETKF Documentation

(continued from previous page)

input: {file: "bkg/bkg.#ENS4#.nc", variable: v}
output: {file: "#TYPE#.#ENS4#.nc", variable: v}

localization:
class: loc_ocean
save_diag: true

hzloc_prof:
type: linearinterp_lat
value:
- {lat: 0.0, radius: 720.0e3}
- {lat: 90.0, radius: 200.0e3}

hzloc_sat:
type: linearinterp_lat
value:
- {lat: 0.0, radius: 500.0e3}
- {lat: 90.0, radius: 50.0e3}

sat_obs:
sat_plats:
- ocn_sat

vtloc_surf:
type: bkg_t
bkg_t_delta: 0.2
bkg_t_var: ocn_t

observation:
class: obsio_test

synthetic_obs:
- [ocn_t, ocn_sat, ocn_t, 20.0, -140.0, 5.0, 0.0, -1.0, 0.1]
- [ocn_t, ocn_prf, ocn_t, 0.0, -140.0, 5.0, 0.0, -1.0, 1.0]
- [ocn_t, ocn_prf, ocn_t, 0.0, -150.0, 5.0, 0.0, -1.0, 1.0]
- [ocn_t, ocn_prf, ocn_t, 0.0, -160.0, 5.0, 0.0, -1.0, 1.0]
- [ocn_t, ocn_prf, ocn_s, 0.0, -160.0, 5.0, 0.0, 0.5, 1.0]

26 Chapter 3. Configuration

CHAPTER 4

Diagnostic Output

4.1 LETKF Solver Diagnostics

The core LETKF solver will output several fields of diagnostic information at the end of the program if enabled in the
yaml configuration file. See solver.save_diag and solver.diag_file configuration sections.

These help get a sense of how many observations are being used by each grid-point.

• col_maxhz - the maximum horizontal search radius for the grid column

• col_obscount - the number of observations, for each grid column, that were found within the given col_maxhz
radius

• lg_obscount - the subset of observations that were allowed to be used for each localization group

• lg_obsloc - the sum of the localization values for observations used by each localization group. A single obser-
vation can have a localization value between 0.0 and 1.0. This gives a general sense of the amount of impact
observations have.

4.2 loc_ocean Diagnostics

If the loc_ocean is used, additional fields will be saved to diagnose how vertical localization is performed.

• vtloc_surf_lvl - the depth, in number of levels, of the surface localization group

• vtloc_surf_depth - The depth, in meters, of the surface localization group

27

UMD-LETKF Documentation

28 Chapter 4. Diagnostic Output

CHAPTER 5

Reference

5.1 LETKF Algorithm

The following is a brief conceptual overview from [Sluka2016] of how the LETKF algorithm operates, for a complete
description see [Hunt2007].

The local ensemble transform Kalman filter (LETKF) is a type of ensemble Kalman filter (EnKF) which uses an
ensemble of forecasts

{︀
x𝑏(𝑖) : 𝑖 = 1, 2, ..., 𝑘

}︀
to determine the statistics of the background error covariance. This

information is combined with new observations, y𝑜, to generate an analysis mean, x̄𝑎, and a set of new ensemble
members, x𝑎(𝑖). First, the model state is mapped to observation space by applying a nonlinear observation operator 𝐻
to each background ensemble member

y𝑏(𝑖) = 𝐻x𝑏(𝑖)

note, that the application of the observation operator is applied outside this UMD-LETKF library.

A set of intermediate weights, w̄𝑎 are calculated to find the analysis mean x̄𝑎

P̃𝑎 =
[︁
(𝑘 − 1) I +

(︀
Y𝑏

)︀𝑇
R−1Y𝑏

]︁−1

w̄𝑎 = P̃𝑎
(︀
Y𝑏

)︀𝑇
R−1

(︀
y𝑜 − ȳ𝑏

)︀
x̄𝑎 = x̄𝑏 + X𝑏w̄𝑎

where x̄𝑏 and ȳ𝑏 are the ensemble mean of the background in model space and observation space, respectively. X𝑏 and
Y𝑏 are the matrices whose columns represent the ensemble perturbations from those means, and R is the observation
error covariance matrix.

Last, the set of intermediate weights, W𝑎 are calculated to find the perturbations in model space for the analysis
ensemble by

W𝑎 =
[︁
(𝑘 − 1) P̃𝑎

]︁1/2
X𝑎 = X𝑏W𝑎

the final analysis ensemble members, x𝑎(𝑖), are the result of adding each column of X𝑎 to x̄𝑎

29

UMD-LETKF Documentation

5.2 Inflation Schemes

In order to account for an underdispersive ensemble, several multiplicative inflation schemes have been implemented
in UMD-LETKF (with hopefully more to be implemented eventually). If you’re not sure which one to pick, it is
usually safest to choose Relaxation to Prior Spread (RTPS) with a value between 0.0 and 1.0.

5.2.1 Multiplicative

The inflation factor 𝛼, which is greater than or equal to 1.0, increases the magnitude of the analysis perturbations.

x
′𝑎
𝑖 ← 𝛼x

′𝑎
𝑖

This method works sufficiently for domain that are regularly sampled by observations. (e.g. the atmosphere). If a
domain is not sufficiently sampled (such as the deep ocean), this method may result in the ensemble spread growing
far too rapidly and the filter ultimately diverging.

5.2.2 Relaxation to Prior Perturbations (RTPP)

The perturbations of the analysis, x
′𝑎
𝑖 are relaxed a percentage, 𝛼, back to the background perturbations, x

′𝑏
𝑖

[Zhang2004]. This has the benefit of effectively being a combination of both multiplicative, and additive inflation.

x
′𝑎
𝑖 ← (1− 𝛼)x

′𝑎
𝑖 + 𝛼x

′𝑏
𝑖

5.2.3 Relaxation to Prior Spread (RTPS)

The spread of the analysis, 𝜎𝑎, is relaxed a percentage of the way, 𝛼, back to the spread of the background, 𝜎𝑏

[Whitaker2012].

x
′𝑎
𝑖 ← x

′𝑎
𝑖

(︂
𝛼
𝜎𝑏 − 𝜎𝑎

𝜎𝑏
+ 1

)︂

5.3 Custom Plugins

In addition to the built-in classes that are provided for localization, observation, and state, an API is provided allowing
a user to code their own classes without have to make any changes to the core LETKF library code.

Todo: Obviously this needs documentation, something I will add once the need arises.

5.4 Citations

30 Chapter 5. Reference

CHAPTER 6

Support

To stay up to date with latest version of UMD-LETKF, watch this repository on GitHub. For questions on how to use,
please contact Travis Sluka at tsluka@umd.edu. For any bugs or feature requests, create an issue on the GitHub Issues
page for the repository.

31

https://github.com/travissluka/UMD-LETKF
mailto:tsluka@umd.edu
https://github.com/travissluka/UMD-LETKF/issues

UMD-LETKF Documentation

32 Chapter 6. Support

Bibliography

[Hunt2007] Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007). Efficient data assimilation for spatiotemporal chaos:
A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1-2), 112–126. http:
//doi.org/10.1016/j.physd.2006.11.008

[Miyoshi2005] Miyoshi, T. (2005). Ensemble Kalman Filter Experiments with a Primitive-Equation Global Model.
University of Maryland. Retrieved from http://hdl.handle.net/1903/3046

[Sluka2016] Sluka, T. C., Penny, S. G., Kalnay, E., & Miyoshi, T. (2016). Assimilating atmospheric observations
into the ocean using strongly coupled ensemble data assimilation. Geophysical Research Letters, 43(2),
752–759. https://doi.org/10.1002/2015GL067238

[Whitaker2012] Whitaker, J. S., & Hamill, T. M. (2012). Evaluating Methods to Account for System Errors
in Ensemble Data Assimilation. Monthly Weather Review, 140(9),3078–3089. https://doi.org/10.1175/
MWR-D-11-00276.1

[Zhang2004] Zhang, F., Snyder, C., & Sun, J. (2004). Impacts of Initial Estimate and Observation Availability on
Convective-Scale Data Assimilation with an Ensemble Kalman Filter. Monthly Weather Review, 132(5),
1238–1253. https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2

33

http://doi.org/10.1016/j.physd.2006.11.008
http://doi.org/10.1016/j.physd.2006.11.008
http://hdl.handle.net/1903/3046
https://doi.org/10.1002/2015GL067238
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/1520-0493%282004%29132%3C1238%3AIOIEAO%3E2.0.CO%3B2

	Overview
	Installation
	Dependencies
	Compiling
	Running Tests
	CMake options

	Configuration
	localization
	mpi
	observation
	solver
	state
	Example Configuration

	Diagnostic Output
	LETKF Solver Diagnostics
	loc_ocean Diagnostics

	Reference
	LETKF Algorithm
	Inflation Schemes
	Custom Plugins
	Citations

	Support
	Bibliography

